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Resonant Wave-Particle Interaction

• Resonant interaction of an integrable system with a weak external perturbation:

H = H0(J) + ε
∑
`

H1
` (J) cos(` · θ − ωt)

Resonance condition: ` ·Ω(J) = ω

• Two interaction regimes:

(a) No resonance overlap: regular system dynamics
(b) Resonance overlap: stochastic system dynamics

• Resonant wave-particle interaction can lead to:

• Stochastic motion:
• Particle ejection
• Particle heating and cooling
• Redistribution of energy between particles
• Phase-space engineering

• Regular motion:
• Phase-locking ⇒ Negative mass effect
• A new type of instability
• Plasma wave manipulation
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Introduction Alpha Channeling Motivation

Alpha-Channeling Motivation

3.5 MeV alpha particles carry about 20%
of the fusion energy

In mirror systems they:

1 Slow down on electrons

2 Take valuable electric potential

3 Excite energetic particle-driven
modes

4 Susceptible to rapid radial losses Ions

α particles

Instabilities

Energy flows

collisions excite

Electrons

damp

◦ R. Vann, H. Berk, and A. Soto-Chavez, Phys. Rev. Lett. 99, 025003 (2007).

◦ J. Hanson and E. Ott, Phys. Fluids 27, 51 (1984).

◦ N. Mizuno and M. Sato, J. Phys. Soc. Jpn. 51, 1001 (1982).
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Introduction Alpha Channeling Motivation

Alpha-Channeling Motivation

Alpha channeling can:

• Extract α particles from the device,
redirecting energy to fuel ions

• Suppress energetic α particle-driven
modes

What makes it possible?

α particles can be distinguished from
fuel ions:

• very high energetic

• have a monoenergetic distribution

• localized in the device core

Ions

α particles

Instabilities

Energy flows

collisions excite

Electrons

damp

Wave

alpha-channeling

damp

◦ N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 612 (1992).
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Introduction Phase Space Engineering

Quasilinear Diffusion

• Network of resonances ` ·Ω(J) = ω in J-space

H = H0(J) + ε
∑
`

H1
` (J) cos(` · θ − ωt)

• Resonance overlap ⇒ Stochastic dynamics

• Quasilinear diffusion
∂f

∂t
=
∑
i,j

∂

∂Ji

(
DQL
ij

∂f

∂Jj

)
,

where
DQL
ij = ε2

∑
`

`i`jπδ(ω − ` · J)
∣∣H1

` (J)
∣∣2 .

• The diffusion is locally directed along `, i.e., ∆Ji/∆Jj = `i/`j .
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Introduction Phase Space Engineering

Diffusive Particle Ejection

• Wave spectrum ⇒ direction of diffusion and affected area

• In the presence of a loss boundary,
the quasilinear diffusion can
selectively eject particles

• No loss boundaries: Particle cooling
or heating
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Introduction Phase Space Engineering

Diffusive Particle Ejection

• Wave spectrum ⇒ direction of diffusion and affected area

• In the presence of a loss boundary,
the quasilinear diffusion can
selectively eject particles

• Loss boundary: Particle ejection
accompanied by particle cooling or
heating

• Balance between the incoming and
outgoing particle flows

• Energy difference ⇒ wave
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Alpha Channeling in MM Diffusion path

Wave-Particle Interaction

• Resonance condition:

ω − `Ω− k‖v‖ = 0

• Stochastic particle dynamics

• Anisotropic quasilinear diffusion

• Particle state kick:

∆p‖ =
k‖∆W⊥

`Ω
∆R = −k⊥∆W⊥

m`Ω2

• Resonance condition requires k‖∆v‖ → 0 ⇒
k‖ → 0 (k‖ � ω/v)

• Random particle walk along the diffusion
path
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Alpha Channeling in MM System of diffusion paths

Device Design and System of Diffusion Paths

• Diffusion path shape: ∆p‖ ≈ 0 ⇒ W 0
‖ ≈

(
ω − `Ω
k‖

)2

+W 0
⊥(Bwave/B0 − 1)

• Limitation of diffusion paths:

1 wave k⊥ 2 wave radial profile Ewave(R)

◦ N. J. Fisch, Phys. Rev. Lett. 97, 225001 (2006).
◦ A. I. Zhmoginov and N. J. Fisch, Phys. Plasmas 15, 042506 (2008).
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Alpha Channeling in MM Diffusion path limitation

Promote Diffusion in Favorable Direction

• For an electrostatic wave:

D ∼ E2
wave(R)J2

` (k⊥ρ)

• Infinitely many zeroes: J`(z
(`)
i ) = 0

• k⊥ρ = z
(`)
i ⇒ D = 0

• Ewave(R) = 0 ⇒ D = 0

• Radial wave limitation ⇒ α
heating limitation:

∆R = −k⊥∆W⊥
m`Ω2 Wave Region

Born

Particles

Diffusion

Limitation

Diffusion Path
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Practical Issues Feasibility of alpha channeling

Feasibility of Alpha-Channeling

To capture the full effect consider:

• ~B(r, z)

• Erf(r, z)

• multiple overlapping diffusion paths

Methodology

• Numerical simulations of:

• Single particle motion
• Particle diffusion by solving the Fokker-Planck equation

• Optimizing efficiency for α-particle birth distribution over wave parameters

• Perturbation and injection of fuel ions

◦ A. I. Zhmoginov and N. J. Fisch, Phys. Plasmas 15, 042506 (2008).
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Practical Issues Feasibility of alpha channeling

Particle Diffusion Simulations

• Numerical examples showing: (a) diffusion path and (b) particle diffusion along
a diffusion path:
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Practical Issues Feasibility of alpha channeling

Particle Diffusion Simulation Results

• Typical device parameters: L = 20 m to 40 m, B ∼ 2 T, T ∼ 20 keV

• Results:

1 80% of α particles extracted
2 60% of α particle energy channeled (75% from extracted)
3 deeply-trapped particles leave slowest, but with least energy

max

D

Alpha Particles

Loss Cone

0 3.5 MeV

3.5 MeV

7 MeV

7 MeV

Loss Cone

Escape

Energy

Extraction

Time
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Practical Issues Feasibility of alpha channeling

Main Results

Main Results

• Two codes solving particle motion equations and the
Fokker-Planck equation are developed and compared

• The effect of the magnetic field inhomogeneity is discussed and
diffusion path parameters are estimated

• The possibility to channel 60% of α particle energy (75% from
extracted) is demonstrated

• The extraction is accomplished in 300 ms by 8 rf regions
perturbing the background plasma density by less than 5%

• The perturbation of the background plasma is studied and
shown to be sufficiently small for smooth wave profiles

• A possibility of injecting fuel ions using the α-channeling
waves is demonstrated
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Practical Issues Alpha-channeling waves

What Waves are Suitable for Channeling

• Waves with optimal parameters should be identified in plasmas

• Weakly-damped localized modes require less power

Methodology

• New method for finding weakly-damped modes is proposed

• Code solving ray tracing equations is developed

• Identification of suitable modes in practical fusion devices is performed

◦ A. I. Zhmoginov and N. J. Fisch, Phys. Plasmas 16, 112511 (2009).

◦ A. I. Zhmoginov and N. J. Fisch, Fus. Sci. Tech. 57, 361 (2010).
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Practical Issues Alpha-channeling waves

Wave and Device Parameters

• Requirements for the α-channeling mode:

1 ω ≈ nΩα
2 k‖ � ω/v and k⊥ρα ≥ 1
3 weakly damped, interacting with deeply-trapped α particles
4 damping on ions at least comparable to the damping on electrons

• Considered device parameters:

1 Proof-of-Principle Facility
d = 1.2 m, L = 12 m, T0 e/i = 4 keV, B ∼ 1 T, n ∼ 1013 cm−3, nD/nT = 1

2 Fusion Reactor Prototype
d = 6 m, L = 15 m, T0 e = 60 keV, T0 i = 15 keV, B ∼ 3 T, n ∼ 1014 cm−3,
nD/nT = 1

3 LAPD
d = 60 cm, L = 10 m, T0 e = 5 eV, T0 i = 1 eV, B ∼ 500 G,
n ∼ 2 · 1012 cm−3, nHe/nN = 4

◦ J. Pratt, W. Horton, and H. L. Berk, J. Fusion Energ. 27, 91 (2008).

◦ W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci.
Instrum. 62, 2875 (1991).
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Practical Issues Alpha-channeling waves

Approach to the Wave Search

• WKB approximation:

dr

dτ
=
∂D
∂k

,
dk

dτ
= −∂D

∂r
,

dt

dτ
=
∂D
∂ω

.

• Waves propagate along or across ~B

◦ A. I. Zhmoginov and N. J. Fisch, Phys. Plasmas 16, 112511 (2009).

◦ A. I. Zhmoginov and N. J. Fisch, Fus. Sci. Tech. 57, 361 (2010).
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Practical Issues Alpha-channeling waves

Curvilinear Coordinate System

• Fast and slow motions; adiabatic invariant coservation (fast motion)

• Introduce new coordinates [R(r, z),κ(r, z)]:

∇R = α(R,κ)
[
b̂z,−b̂r

]
, ∇κ = β(R,κ)

[
b̂r, b̂z

]
.

Metric tensor is diagonal:

ḡij =

(
α−2 0

0 β−2

)
.

• Ray-tracing Hamiltonian in the new coordinates:

H(KR,Kκ , R,κ) = D(αKR, βKκ , R,κ)

where
αKR = kr b̂z − kz b̂r = kn βKκ = kr b̂r + kz b̂z = k‖

• Use full kinetic dispersion relation
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Practical Issues Alpha-channeling waves

Waves

• Suitable waves: fast and shear Alfvén waves, ion Bernstein wave

• Dispersion relation of the identified waves:

a = n2
‖ +

d2

b− n2
,

where

a ≈ 1−
∑
i

ω2
pi

ω

∑
n

e−λi
n2In(λi)

λi(ω − nΩi)

b ≈ 1−
∑
i

ω2
pi

ω

∑
n

e−λi

ω − nΩi

[
n2In
λi

+ 2λi
(
In − I ′n

)]

d ≈
∑
i

ω2
pi

ω

∑
n

ne−λi (In − I ′n)

ω − nΩi
+
ω2
pe

ωΩe

• Wave properties:

• ω ∼ nΩα, vph > vth e, λ‖ ∼ 1 m
• k⊥ρi � 1 for the cold waves (λ⊥ ∼ 10 cm) and k⊥ρi ∼ 1 for kinetic wave

(λ⊥ ∼ 1 cm)
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Practical Issues Alpha-channeling waves

Waves

• Suitable waves: fast and shear Alfvén waves, ion Bernstein wave

• Ray trajectories:
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• Sensitive to small magnetic field perturbations
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Practical Issues Mode Structure Calculation

Mode Structure Calculation

Approaches

• WKB: Large radial and longitudinal mode numbers

• Integral Equation: Small radial and longitudinal mode numbers

• Semi-WKB: Large radial, but not longitudinal mode numbers

• Original equation:
D̂ωϕ(x, y) = 0

• Decomposition:

ϕ(x, y) =
∑
j

ϕj(x, y)eiS0(y)+iS1(y)+...

• First two equations:
D̂◦ωϕ0 = 0

D̂◦ωϕ1 −
iS′′0
2

∂2D̂◦ω
∂k̂2

y

ϕ0 + S′1
∂D̂◦ω
∂k̂y

ϕ0 = 0

where D̂◦ω = D̂ω(k̂x, S
′
0, x, y)
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Practical Issues Mode Structure Calculation

Mode Structure Calculation

Approaches

• WKB: Large radial and longitudinal mode numbers

• Integral Equation: Small radial and longitudinal mode numbers

• Semi-WKB: Large radial, but not longitudinal mode numbers

• Generalize to the integral operators of a special type

• For an electrostatic wave: Vlasov-Poisson equation in action-angle variables:

∆ϕ ≈ 4πq2
s

∫
d3J

∂f0

∂Ji

∞∫
0

dτ
∂Ji
∂pj

∂ϕ

∂qj

∣∣∣∣∂q∂θ
∣∣∣∣−1

.

• Using Monte-Carlo integration method:

• may require less computational power
• the error can be estimated
• advanced integration methods use more samples where necessary

• Wave damping can be also calculated
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Practical Issues Possible Experiments

Possible Experimental Verification

• The Large Plasma Device (LAPD) at UCLA could be used to verify the
α-channeling concept and observe the identified α-channeling modes

• Presently, the fast Alfvén wave launching campaign is underway

• Shear Alfvén waves. Ion-ion hybrid Alfvén wave resonator observed

◦ S. Vincena, W. Farmer, J. Maggs, and G. Morales, Geophys. Res. Lett. 38, L11101 (2011).

◦ M. Temerin and R. Lysak, J. Geophys. Res. 89, 2849 (1984).

◦ V. Guglielmi, A. Potapov, and C. Russell, JETP Lett. 72, 298 (2000).
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Practical Issues Possible Experiments

Main Results

Main Results

• Quasi-one-dimensional wave propagation is studied

• A method of identifying weakly-damped localized modes is
proposed

• Code calculating ray trajectories and identifying modes
suitable for α-channeling is developed

• Modes suitable for α-channeling are identified in several
practical device designs

• Crude dynamical model of α-channeling is analyzed

• Mode stability in the presence of periodic magnetic field
fluctuations is addressed

• A method for calculating IBW mode structure is proposed

• Approaches to the experimental study of the identified modes
are proposed
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New Opportunities Catalytic methods in alpha channeling

Minority Ion Catalysis

• Alpha-channeling modes damp on electrons

• Redirection of wave energy to fuel ions, requires:

1 resonance with α particles
2 resonance with fuel ions

• But this:

1 restricts parameter space of waves
2 need to avoid fuel pump-out

Possibilities

• Travelling waves: convective amplification followed by damping

• Contained modes:

• mode grows on α particles and damps on ions
• mode grows on α particles and damps on minorities (extends wave

parameter space)

◦ E. J. Valeo and N. J. Fisch, Phys. Rev. Lett. 73, 3536 (1994).
◦ A. I. Zhmoginov and N. J. Fisch, Phys. Rev. Lett. 107, 175001 (2011).

23 / 59



New Opportunities Catalytic methods in alpha channeling

Minority Ion Injection

• Wave energy redirected to fusion ions through minority ions

• Avoid plasma pump-out and strong wave damping ⇒ ω � ΩD, ω ∼= Ωmin

• νmin/D � νmin/e.

• The minority ions heated by the wave can then dissipate their energy on ions
through collisions

RF Wave

IonsMinority Ions

Electrons
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New Opportunities Catalytic methods in alpha channeling

Minority Ion Injection

Conditions on the wave energy density:

• Ti � Tmin � 200 keV (Wmin→ions > 0 and Wmin→ions �Wmin→electrons)

• ταQL � ταcoll

• Prf � Pcrit

• Wmin loss �Wwave→ions

• Numerically solved Fokker-Planck
equation for minorities and α particles

• Showed that all conditions can be
satisfied for a practical device
(T ≈ 10 keV, n ≈ 3 · 1013 cm−3,
B ≈ 1 T)

• Polarization of the fast wave is crucial
for moderate minority cooling

• Damping independent of k‖ and ω (in
inhomogeneous magnetic field) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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New Opportunities Catalytic methods in alpha channeling

Main Results

Main Results

• Minority ion injection technique is proposed

• Code solving the collisional Fokker-Planck equations for
minorities and α particles is developed

• The feasibility of the minority ion injection technique is
demonstrated

• A method of coupling the localized mode in the central cell to
the localized mode in the device plug is proposed
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Optimizations in Networks of Diffusion Paths

Origin of the Network of Diffusion Paths

• Quasilinear diffusion is a flexible tool for phase space manipulation

• “Network of diffusion paths”

• Manipulated by changing diffusion coefficients of individual paths

Particle sinks

Diffusion paths

Fixed incoming 

flows

◦ A. Zhmoginov and N. Fisch, Phys. Lett. A 372, 5534 (2008).
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Optimizations in Networks of Diffusion Paths

Optimization Problem

• Constrained flexibility:

• Minimization of the weighted sum S of outgoing fluxes given the input fluxes

• Nonlinear optimization problem:

1 S( ~D) is a nonlinear function; the optimization domain is Di > 0
2 S(~I) is a linear function; the optimization domain is complex

• Equivalence of the network to an electrical circuit:

• Particle fluxes: currents
• Particle densities: potentials
• Loss boundary: grounded ends
• Diffusion coefficients: conductivities
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Optimizations in Networks of Diffusion Paths

Solution of the Optimization Problem

1 Excluding the minimum weighted path

2 Constraints:

• J = −D∆f
∆x

•
∑
i

Ji = 0
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Optimizations in Networks of Diffusion Paths

Solution of the Optimization Problem

3 Removing vertical constraints J = −(∆f/∆y)D

• n+m− 1 free parameters

• ~D or ~I are varied

• S( ~D) is nonlinear

• S(~I) is linear, but nonlinear {~I}

• nm free parameters

• ∆Jk` are varied

• nm+ n linear inequalities

• S(∆Jk`) is linear

4 Considering some solution of the new linear optimization problem

5 Proving that there are many configurations with the same S

6 Proving that one of such configurations f̄ij can be reached asymptotically in a
network of diffusion paths
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Optimizations in Networks of Diffusion Paths

Main Results

Main results

• Numerical codes for solving two-dimensional diffusion equation
and finding the optimum in a network of thin diffusion paths
are developed

• It is proven that the minimum of S is reached in a network of
diffusion paths with coefficients 1, β, β2, β3, β4 as β →∞

• The manifold formed by possible {~I} is shown to be
non-convex

• The choice of diffusion coefficients is shown to be reduced to
solving a linear optimization problem

• The derivative ∂S/∂Dxk is calculated explicitly
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Negative Mass Effect (NME) Motivation

Motivation

Negative Mass Effect for the Vaccum Wave

I. Y. Dodin and N. J. Fisch, Phys. Rev. E 77, 036402 (2008).

1 Systems undergoing slow
oscillation-center drift and fast oscillatory
motion interacting with external resonant
force considered

2 Drift center Lagrangian and the effective
mass introduced

3 Particle interaction with a vacuum
circularly polarized wave in a background
magnetic field studied

4 Tristability and negative parallel mass
effect described
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Negative Mass Effect (NME) Autoresonance and Effective Mass

Perturbed Hamiltonian

• New formalism is necessary to study the non-vacuum (n 6= 1) case

• System Hamiltonian:

H = H0(I) + εH1(I) cos(ω0t− ` · φ)

• Resonance condition: ` · ω = ω0

• Canonical transformation

θi = φi θn = ω0t− ` · φ
Ji = Ii − `iIn/`n Jn = In/`n

• New 1D Hamiltonian

H = H0 − ωJn + εH1 cos θn

• Stationary points correspond to externally-driven solutions (with zero energy in
internal degrees of freedom)
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Negative Mass Effect (NME) Autoresonance and Effective Mass

Stationary Points

• System Hamiltonian:
H = H0 − ωJn + εH1 cos θn

• Ji<n are constants of motion

• Stationary points J̇n = θ̇n = 0 form (n− 1)-dimensional stationary surfaces in
the n-dimensional J-space:

0

0.05

0.1

-0.5 0 0.5 1 1.5

• The particle is “locked” to the stationary surface: Ji<n change slowly due to
external forces ⇒ adiabatic invariant Λ =

∮
Jn dθn = const

• Only dissipative forces can affect Λ, driving particles away or towards the
resonance surface
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Negative Mass Effect (NME) Autoresonance and Effective Mass

Effective Mass

• Add external force F

İ1 = ∂H/∂φ1 + F İ2 = ∂H/∂φ2

• Then:

J̇1 = F J2 = J2(J1)

I1 = J1 + `1J2

• Therefore:

d

dt
〈I1〉 = F

(
1 + `1

dJ2

dJ1

)
• Effective mass:

meff ≡
(

1 + `1
dJ2

dJ1

)−1

0

0.05

0.1

-0.5 0 0.5 1 1.5
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Negative Mass Effect (NME) Negative Mass Effect

Wave-Particle Interaction

• Particle interacting with a circularly-polarized wave

A =
mc2

q

a0√
2

(x̂ cos ν − ŷ sin ν)

and magnetic field B = ẑB0

• Particle Hamiltonian:

H ≈ H0 −
εµ̃1/2

H0
cos(θ − ωt+ kz)

where H0 = c(m2c2 + 2mΩ0µ̃+ p2)1/2, ε = mc3
√
mΩ0a0 and ν = ωt− kz

• Canonical momentum µ̃ is not equal to the magnetic momentum µ:

µ =
(
±
√

2mΩµ̃− q|A|/c
)2

/(2mΩ)

• Similar systems were studied previously for n = 0 and n = 1

• Here we consider the case n 6= 1
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Negative Mass Effect (NME) Negative Mass Effect

Stationary Curve

• Stationary curve in (J1, J2) = (−µ̃, p/k − µ̃) coordinates:
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Negative Mass Effect (NME) Negative Mass Effect

System Stability

• Unstable regions of the stationary curve:
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Negative Mass Effect (NME) Negative Mass Effect

System Stability

• System stability determined using the Poincaré-Hopf index theorem

• The expression for the critical point obtained:

J∗
2 =

(
ε

8|1− n|ω2

)2/3

◦ A. I. Zhmoginov, I. Y. Dodin and N. J. Fisch, Phys. Rev. E 81, 036404 (2010).
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Negative Mass Effect (NME) Negative Mass Effect

Paralell Mass

• Parallel mass calculated:

m‖ =
γ3

1 + 2µΩ− dJ1/dJ2(k − pΩ + 2kΩµ)

• The regions of negative parallel mass are retained for n 6= 1:
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Feasibility of the NME Effect of Friction and Collisions on NME

Dissipative Forces

• Particle radiation and collisions limit feasibility of the negative mass effect

• Dissipation results in:

• Drift of system states along the stationary surface

• Attraction (γ < 0) or repulsion (γ > 0) from stationary surface Λ̇ = γΛ

• For radiation friction:

• Negative mass region is unstable
(due to dissipations)

• Wave-particle Hamiltonian ⇒ Wave
energy evolution

• Wave energy dissipation for m‖ > 0

• Wave energy amplification for
m‖ < 0 (supplied by particle kinetic
energy)

◦ A. I. Zhmoginov, I. Y. Dodin, and N. J. Fisch, Phys. Lett. A 375, 1236 (2011).
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Feasibility of the NME Effect of Friction and Collisions on NME

Effect of Collisions

• Collisions ⇒ Particle state
drift and broadening of
distribution function

• Collisions together with
external forces can be used to
bring particles to the
stabilized negative mass
region

• Stationary distribution
function is localized near
stationary curve if
mnegative � mbackground

◦ A. I. Zhmoginov, I. Y. Dodin, and N. J. Fisch, in preparation.
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Manifestations of the NME Plasma Instability and Wave Manipulation

Negative Mass Instability

• Branch with m‖ < 0 ⇒ Collective instability in plasma

• On the m‖ < 0 branch with v ≈ 0:

ω2
p =

∑
s

4πnsq
2
s

ms ‖
< 0

• Condition for the instability:

|n− 1| ≤ ε
(

8µ̃3/2
)−1

◦ A. I. Zhmoginov, I. Y. Dodin, and N. J. Fisch, Phys. Rev. E 81, 036404 (2010).
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Manifestations of the NME Plasma Instability and Wave Manipulation

Plasma Wave Manipulation

• Manipulating plasma wave by manipulating:

• particles
• laser wave

• Plasma wave group velocity:

vgr =
3k

ωp

∑
s

ω̄2
p s

ω2
p

v2
th s

• Changing wave parameters one can keep 〈vs〉 = 0, but change vgr

• vgr can vanish in a system with two electron species (trapped and untrapped)
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Manifestations of the NME Frequency Doubling

Kinetic Energy and the Negative Mass

• Drift particle Hamiltonian

H(P, z) = K(P ) + U(z)

• Here K(P ) is a kinetic energy and U(z) is a potential energy

• K(P ) profile corresponding to the negative mass case:

• Here v = ż = ∂K/∂P and m‖ ∼ (∂2K/∂P 2)−1
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Manifestations of the NME Frequency Doubling

Frequency Doubling

• v(P ) dependence:

• ωforce = ω0 ⇒ ωparticle = 2ω0

• Particle radiates at 2ω0 ⇒ frequency doubling
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Manifestations of the NME Wave-Particle Interaction

Wave-Particle Interaction

• State with v = 0 and m‖ < 0 has larger energy:

• Separatrix-crossing effect to extract this energy:
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Manifestations of the NME Wave-Particle Interaction

Wave-Particle Interaction

• Two island chains for m‖ < 0:

• Two phase-space configurations:
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Manifestations of the NME Wave-Particle Interaction

Wave-Particle Interaction

• Particle passes several separatrix-crossing events:
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Manifestations of the NME Wave-Particle Interaction

Wave-Particle Interaction

• Two or three final levels and Three types of transitions

• Some particles can be transfered from one state with v = 0 to another

• Energy difference → wave (amplifying it)

• Some particles can leave in the third state with v 6= 0

• Porbability of this is smaller when the trapping occurs at higher wave
amplitudes

50 / 59



Manifestations of the NME Wave-Particle Interaction

Main Results

Main Results

• General formalism for: effective parallel mass, dissipative and stochastic effects

• Negative mass effect is shown to be retained for n 6= 1

• The limitation on µ, above which states are unstable, is derived

• Radiation friction either accelerates particles (p‖) or heats them (µ)

• Particles with m‖ < 0 are shown to be unstable due to radiation friction

• The radiation friction is shown to cause wave to amplify when m‖ < 0

• Collisions with ligher particles coupled with external forces are shown to bring
particles to m‖ < 0 branch

• Negative particle mass is shown to give rise to many interesting phenomena:

• negative mass plasma instability
• plasma wave manipulation
• frequency doubling
• birth of two islands in wave-particle interaction problems
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Appendix

Alpha-Channeling Simulations

Numerical Models

• Particle motion equations:

m
dv

dt
=
q

c
(v ×B)− q∇ϕ.

• Random-walk equation:
vn+1 = vn + f + d̂w,

tn+1 = tn + ∆t(vn),

• Fokker-Planck equation:

∂p

∂t
= −

∑
i

∂

∂vi

(
pfi
∆t

)
+

1

2

∑
i,j

∂2

∂vi ∂vj

[
p

∆t

(
d̂d̂

T
)
ij

]
.
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Appendix

Ion Heating

• Deuterium ions and α particles
have the same q/m ratio. Fuel
ions can be injected along the
same path that is used to cool
down α particles. Energy
extracted from α particles is then
used to heat ions.

• Ion loss can be avoided by
limiting ion cooling (controlled
by the radial extent of the rf
region). Alternatively, ions can
be injected along a different
diffusion path.
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Appendix

Magnetic Field Profile

We assume that the magnetic field B in both devices is given by Bφ = 0,
Br = −r(dBz/dz)/2, and

Bz = Bmin +
1

2
(Bmax −Bmin) [1− cos (π |2ηz/L|g)] ,

where g is an integer, η ≥ 1 is a constant, Bmin and Bmax are the minimum
and the maximum values of Bz correspondingly.
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Appendix

Plasma Dispersion Relation

We assume that:

• the linear density of the plasma does not depend on the axial position
n(z)|R=0 ≈ n0B(z)/B0 on the axis, and

• that radial plasma temperature and density profiles are given by
n(r, z) = n(z)|R=0 exp(−R2/a2) and T (r) = T 0[κ+ (1−α) exp(−R2/a2)],
where α ≤ 1 is a constant, and a is a characteristic plasma radius.
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Appendix

Plasma Dispersion Relation

The dispersion relation D = 0 is modelled by the plasma kinetic dispersion relation
reading D = ‖ε̂− n21̂ + nn‖, where ε̂ = 1̂ +

∑
s

χ̂s, χ̂s = ω2
ps/ω ·

∑
n e
−λŶ

s

n(λ), and

tensor Ŷ
s

n(λ) is given by the following expression:

Ŷ
s

n =



n2In
λs

An −in∆InAn
k⊥
Ωs

nIn
λs

Bn

in∆InAn QAn
ik⊥
Ωs

∆InBn

k⊥
Ωs

nIn
λs

Bn − ik⊥
Ωs

∆InBn
2(ω − nΩs)

k‖w2
s⊥

InBn


.

� T. H. Stix, Waves in Plasmas (Springer-Verlag, New York, 1992).
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Appendix

Plasma Dispersion Relation

Here ω2
ps is the plasma frequency for species s, Q =

(
n2Inλ

−1
s + 2λs∆In

)
,

∆In = In(λs)− I ′n(λs), An = (k‖ws ‖)
−1Z0(ξsn), Bn = k−1

‖ [1 + ξsnZ0(ξsn)],

ξsn = (ω − nΩs)(k‖ws ‖)
−1, λs = k2

⊥ρ
2
s/2, Z0 is the real part of the plasma dispersion

function, ws ‖ and ws⊥ are parallel and perpendicular thermal particle velocities

correspondingly, ρs = ws⊥/Ωs, and Ωs is the gyrofrequency.
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Appendix

Ray-Tracing Equations

• The corresponding Hamiltonian equations are

Ṙ = α
∂D
∂kn

, κ̇ = β
∂D
∂k‖

,

K̇R = −∂D
∂R
−KR

∂α

∂R

∂D
∂kn

−Kκ
∂β

∂R

∂D
∂k‖

,

K̇κ = −∂D
∂κ
−KR

∂α

∂κ
∂D
∂kn

−Kκ
∂β

∂κ
∂D
∂k‖

.

• For mirror machines with R� L:

α ≈
√
B/B0, β = 1 +O(R2).
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Appendix

Mode Coupling

• The extracted energy can also be coupled to particles in the mirror plug.

• Consider two harmonic oscillators with the same frequency ω:

◦ If the oscillators are uncoupled, there is no energy transfer between them.
◦ If an arbitrarily small coupling is introduced, the energy can be transfered

between the oscillators.
The energy levels split and the initial state with all energy in one of the
oscillators corresponds to the superposition state.

ω

ω0
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